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Contact and stress anisotropies in start-up flow of colloidal suspensions
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Spatiotemporal correlations in start-up flows of attractive colloids are explored by numerical simulations as
a function of their volume fraction and shear rate. The suspension is first allowed to flocculate during a time 7,,,
then the stress necessary to induce its flow is computed. We find that, at low volume fractions, the stress is a
universal function of the strain. On the contrary, at high volume fractions, this scaling behavior is no longer
observed and a supplementary stress becomes necessary to induce flow. To better understand the physical
origin of the supplementary stress, we examine the creation, disruption, and orientation of contacts between the
particles and the corresponding contribution to stress as a function of strain. Our simulations show that the
onset of flow is dominated by the creation of contacts between the particles at low shear rates and by their
disruption at high shear rates. However, neither the evolution of the number of contacts with strain nor their
orientation can fully account for the nonscaling behavior of the stress at high volume fractions. At small strains,
the relative importance of forcing in the compression quadrant increases with volume fraction and with
flocculation time. This mechanism of stress transmission through the compression quadrant is not accounted
for in the usual description of yield stress, which considers the breaking of bonds oriented in the extension

quadrant.

DOI: 10.1103/PhysRevE.80.031401

I. INTRODUCTION

Many complex fluids such as dense suspensions, emul-
sions, or colloidal glasses are composed of interacting par-
ticles that self-organize into an isotropic microstructure un-
der quiescent conditions. The application of a rate of
deformation disrupts this isotropy such that a collective be-
havior emerges. As a consequence, a rich variety of struc-
tures emerges [1-3], which determines mechanical macro-
scopic flow properties characterized by nonlinear
relationships between the stress and the shear rate: among
them, plastic behavior [4] (a power-law relationship between
the stress and the shear rate), jamming [5-7] (flow stops
under the application of a high enough stress), and yielding
[8] (flow does not start although a nonzero small stress is
applied). It is of crucial importance to understand how these
materials start to flow and to tune their physicochemical
properties in order to reduce the amount of energy necessary
to make them flow. An outstanding question about such sys-
tems thus emerges: what physical mechanisms are respon-
sible for the observed macroscopic behavior as the initial
isotropy is broken? For example, mechanical measurements
reveal a very nonlinear relationship between the applied
stress and the induced shear strain or shear rate: it is neces-
sary to apply a nonzero value of the stress, the yield stress, in
order to induce the flow. The microscopic origin of the yield
stress is not generally understood, and its value, its measure-
ment, and even its existence are not well established [9,10].
The yield stress is generally thought as a manifestation of the
maximum force needed to break contacts between particles
[4]. But, when a suspension flows, particles are not only
drawn apart but also pushed together. That is, under simple
shear, two colloids whose center-to-center segment is ori-
ented in the extension quadrant are drawn apart, whereas
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when they approach each other due to the flow, their center-
to-center segment is oriented in the compression quadrant
(Fig. 1). In this paper, we show that this phenomenon leads
to a physical mechanism that produces an excess of stress at
small strains. Indeed, as flow develops, aggregates of par-
ticles form [11-13]. These aggregates are not isotropic, and
their orientation relative to the flow direction depends on the
shear rate and the volume fraction of the suspension, as may
be seen from direct observation of the particles inside the
shear cell (Fig. 2). We show that, at high volume fraction, a
supplementary stress develops at the onset of flow. This
supplementary stress is due to the organization of contacts
between particles in the compression quadrant of the shear
flow, and it is not fully accounted for by the simple breaking
of colloidal contacts.

The paper is organized as follows. The computational
model is briefly introduced and the preparation of the sus-

-

FIG. 1. Strain of a square under a simple shear. Particles A and
C, whose center-to-center segment lies in the compression quadrant
(hatching along the first diagonal), are drawn together due to the
flow, whereas particles B and D, in the extension quadrant (hatching
along the second diagonal), are pulled apart. 6 is the angle of the
center-to-center segment and the direction of the flow.
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FIG. 2. (Color online) Images from a simulation of a sheared
colloidal suspension for volume fractions (a) ¢=0.20 and (b) ¢
=0.50 and at a strain y of about 0.5. All views are in the shear
gradient plane with the top of the suspension moving to the right
and the bottom moving to the left. The figures, offset to the lower
right, represent a typical slice through the respective suspension.
Included in the lower images is an indication of stress chains where
the largest stresses are found. Note that for the ¢=0.20, the chains
form in the extension quadrant. In contrast, for the ¢=0.50 case,
many chains are formed both in extension and compression. Typi-
cally, at the lowest shear rates there are fewer stress chains in com-
pression, however there are more by proportion as the volume frac-
tion and shear rate are increased.

pension, before the application of shear, is described. A con-
stant shear is then applied and it is shown that, at low con-
centrations, the growth of stress with strain exhibits a
universal behavior. This universal behavior is not observed at
small strains and the higher concentration studied. Indeed, an
additional stress, supplementary to that indicated by simple
scaling arguments, is needed to make the suspension flow.
The microstructure of the suspension responsible of this
supplementary stress is then investigated in the last part of
the paper, where the orientations of pairs of particles in con-
tact and the stresses between them are studied.

II. DISSIPATIVE PARTICLE DYNAMICS MODEL

We use a dissipative particle dynamics (DPD) based
model [14] to study the onset of flow of a colloidal suspen-
sion of attractive particles. This approach can be thought of
as a Lagrangian formulation of Navier Stokes with thermal
fluctuations [15]. As this computational model is largely de-
scribed in a previous work [14], we will only highlight its
main features and focus, more so, on the relevant aspects of
the model to this work. The DPD simulation is similar in
structure to molecular dynamics simulation, but, instead of
modeling all the molecular properties of the system, the mo-
tion of mesoscopic DPD particles that represent a coarse
grained fluid is considered [14,16] (Fig. 3). The DPD par-
ticles are subjected to conservative, dissipative, and random
forces [17],

e D R
F;=F;+F;+F;. (1)

The conservative force is a soft repulsive radial force, which

decreases linearly with the center-to-center distance, |r;—r;

s

PHYSICAL REVIEW E 80, 031401 (2009)

0 10 20 30 40 50 60
sap(nm)

FIG. 3. (Color online) Definition of the DPD particles and of the
colloids. The suspension fluid is represented by DPD particles (full
disks). A and B are two colloids that consist of an assembly of DPD
particles, subjected to constraints so that they form a rigid body. In
addition to the DPD based forces between all (DPD) particles, col-
loids A and B are subjected to van der Waals repulsive force and
lubrication forces. Inset: additional interaction potential between the
colloids (Derjaguin approximation of a Lennard-Jones potential).

between the two DPD particles i and j and whose amplitude
is chosen so that the compressibility of the DPD fluid
matches that of water. The dissipative force is proportional to
the difference of velocities between DPD particles i and j,
ViV, and acts to slow down their relative motion, produc-
ing a viscous effect. Lastly, a random force is added, which
controls the temperature of the system. The dissipative and
random forces control the viscosity of the fluid and, to main-
tain a well-defined temperature, are related by fluctuation-
dissipation theorem [18]. In contrast to the individual DPD
particles, a colloid is then defined as an assembly of con-
strained DPD particles so that they form a rigid body (Fig.
3). As described previously [14,19], when modeling a dense
suspension of hard spheres (or colloids in our case), the DPD
particle interactions are not sufficiently strong to prevent
overlaps of the spheres so this model includes lubrication
forces [14,20]. The computational model, employed in this
study, has been shown to recover the Einstein intrinsic vis-
cosity for a dilute suspension of spheres [14,16], reasonable
estimates of the Huggins coefficient for moderately dense
suspension [14,19], and good agreement with Stokesian dy-
namics predictions of relative viscosity as a function of shear
rate in dense suspensions [14,21].

For this study, an additional interaction potential is incor-
porated into the model. Here, we use a Derjaguin-type ap-
proximation of the Lennard-Jones interactions [22] between
colloid spheres A and B at short distances. This potential
scales as the sum of a hard-sphere repulsion term, Ayg/ 517435
and a van der Waals potential, H/s,p, where Ayg and H are
constants related to the hard-sphere potential and to the Ha-
maker constant and s, is the distance between the two par-
ticles surfaces. The colloid’s radius is the only length scale
explicitly included in the description of the suspension. The
parameters chosen for the simulation could correspond to
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spherical alumina particles of approximately 100 nm diam-
eter. The interaction potential between two particles exhibits
a minimum of 25kzT at a distance of 6 nm between the
surfaces of the particles. The time integration scheme for the
DPD particles and the colloids is based on a velocity-Verlet
algorithm described in [14,23].

The stress tensor for this model suspension has several
contributions. There are contributions from the propagation
of momentum and interparticle forces of the DPD particles
and they are given by

1 o 1
Tag= %; Pidlipt 5/% ff;(l'i -T)g, (2)

where i and j refer to two different DPD particles, « and B
refer to Cartesian coordinate axes, f,-j is the force between
particles i and j, and p; is the momentum of particle 7 relative
to the macroscopic velocity field. V is the total volume of the
system and m is the mass of the DPD particles. In addition
there are contributions from the colloidal interactions. The
stress contribution from the van der Waals forces is given by

1
—2, F§ - , 3
ng ap(Ta 1'3)3 (3)

where A and B refer to two different colloids and F 45 refer to
the van der Waals forces between colloids A and B described
above. Stress contributions from the lubrication forces are
also included. They imply several modes. The most impor-
tant one is the squeeze mode, which accounts for forces that
develop as two spheres directly approach each other. This
force is proportional to the velocity difference between the
spheres and is inversely proportional to the nearest surface to
surface distance. For the case of monosize spheres the lubri-
cation force

Frp= %7777612(% —Vp)/Sap, (4)

where 7 is the continuous fluid viscosity, a is the sphere
radius, v, is the velocity of colloid A, and s, is the nearest
surface to surface distance between spheres A and B. Addi-
tional contributions to the squeeze mode as well are other
modes all scale logarithmically and are largely dominated by
the squeeze mode [20]. In our computations, all the modes of
the lubrication force are taking into account up to the first
order, including terms that scale as 1/s,p, Ins,p, and
Sap 1N Syp.

There are additional corrections to the stress tensor due to
the constraint forces on the DPD particles that make up the
colloid. The constraint forces are determined by accounting
for the rigid body motion in the individual particle displace-
ments and change in velocity at each time step of the
velocity-Verlet algorithm. Details of this approach are de-
scribed in [23].

We study three volume concentrations, ¢p=20%, 40%, and
50%, where the number of colloidal particles ranges from
3760 to 9616. As we are interested in the onset of flow we
study flow in a simple shear geometry with shear strain y
smaller than 1. In each simulation, we control the shear rate
v and measure the macroscopic stress o.
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FIG. 4. (a) Evolution of the pair distribution function as a func-
tion of aging time for ¢=50%, 1,,=0.93 (short dashed line), 7,
=9.3 (long dashed line), 7,,=560 (continuous line), and ¢#,,=1120
(thick continuous line). Inset: the pair distribution functions for the
three studied aging times for particles close from contact. (b) Pair
distribution function of the suspensions after rw=1120 for ¢
=20% (continuous line), ¢=40% (short dashed line), and $=50%
(long dashed line).

III. PREPARATION OF THE SAMPLE

The colloidal particles are attractive, and in the absence of
flow, the suspension evolves to form a colloidal gel. We fol-
low a well-defined preparation protocol of the suspension. It
is prepared by randomly placing the spheres, in a cubic cell,
with small overlaps being possible. Then, a repulsive force is
applied between spheres if they overlap. Once all the spheres
no longer overlap, the system is allowed to equilibrate under
the action of Brownian and hydrodynamic forces. As the
system equilibrates, the pair distribution function is evalu-
ated and found to become reasonable consistent with the
Percus Yevick [24] approximation. When a stable radial dis-
tribution function is obtained, the van der Waals and lubrica-
tion forces are introduced by turning them on slowly enough
so that the additional kinetic energy produced in the system,
because two spheres are too close each other, is allowed to
dissipate. We choose the end of the introduction of the van
der Waals and the lubrication forces as the initial time of the
system. Then, for a given time ¢,, (¢,=9.3, 93, or 1120), the
suspension is allowed to evolve toward a flocculated colloi-
dal gel. As the suspension ages during a time ¢, it is still out
of equilibrium, and during this period, the pair distribution
function evolves [Fig. 4(a)]: it becomes increasingly peaked
at contact and develops secondary peaks. The increase in
g(r) at contact with time [Fig. 4(a), inset] is indicative of the
increase in number of colloids in near contact [25]. For ¢
=20%, a m_arked peak at a distance between colloids’ center
equal to y3r is obtained, showing that a local hexagonal
structure develops [Fig. 4(b)].

IV. RESCALING OF THE FLOW CURVES

At several 7, values, we then begin to make the suspen-
sion flow. A shear deformation is imposed by translating the
upper and lower boundaries of the cube according to the
Lees-Edwards boundary condition [26]. The direction of the
flow is denoted by uy and its gradient uy (Fig. 1). In order to
compare our results with measured stress and shear rate val-
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ues, we need to identify the characteristic stress ¢ and time

(or shear rate %) units of the flow. As the interparticle inter-
action is strong, the relevant energy scale in our system is the
interaction potential between two particles rather than ther-
mal energy, so that in the studied flow regime the interaction
forces between two particles compete with hydrodynamic
forces. Given that F,,,, is the maximal interaction force be-
tween two colloids, a is their radius, and 7 is the viscosity of
the continuous medium, the natural stress and shear rate (and
thus also time) units of our flow are given by

F,,
=5, (5)
a
e Fmax
= i 6
Ll (6)

where & is the product of F,, with the number of particle

bonds that cross the unit area, ¢*/a® [27] and 7 is the shear
rate, which equilibrates the intercolloidal stress, F./a>,
with the hydrodynamic stress, 67777y. Our simulation results
may thus be compared to real systems in which the energy of
interactions between colloids is larger than thermal energy.
Considering the 100 nm alumina particles, the maximal in-
teraction force, given by the maximum of the slope of the
interaction potential, is of the order of 4 X 10713 N, so that

the stress scale & is 40 Pa. The corresponding shear rate 7 is
210 s

The response of the suspension to the application of shear
is given in Fig. 5. At extremely low deformations, we do
observe an elastic regime, in which the stress is proportional
to strain and goes to zero at null shear values. Nevertheless,
thermal activation plays a role in this elastic regime as the
apparent elastic modulus measured decreases when the shear
rate decreases. For this paper, we are not interested in this
elastic regime but will describe in detail the onset of flow
regime. The value of the stress at the onset of flow depends
on the equilibrium time: the longer ¢, the higher the initial
stress value. Then, the stress progressively increases up to a
maximum value that does not depend on the equilibration
time.

In addition, the stress growth curves of low concentration
suspensions exhibit a remarkable feature: if the origin of
strain is chosen to take a nonzero value, 7, then all the
stress, as a function of strain, superimpose (Fig. 5, right col-
umn). 7y, is an increasing function of the waiting time ¢,,. As
a consequence, the application of flow plays the same quali-
tative role as the aging of the suspension. Such self-
similarity is characteristic of the aging dynamics of out of
equilibrium systems and has been observed in the case of
concentrated soft colloidal particles [28].

In contrast to the low concentration suspensions, for the
higher concentrations studied and when the waiting time is
long enough, the evolution of the stress as a function of time
exhibits a different shape. In this case, the stress growth
curves may no longer be superimposed by shifting the strain.
At long waiting times, the value of the stress (ignoring the
elastic regime) at null strain now tends toward a nonzero
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FIG. 5. (a)—(c) Dimensionless stress as a function of strain (left
column) and shifted strain (right column) when a constant shear rate
is applied (y=3.5%X107%). (a) ¢=20%, (b) ¢$=40%, and (c) ¢
=50%. Before the application of shear, the suspension was allowed
to equilibrate for times 7,,=9.3 (continuous line), 7,,=93 (dashed
line), or #,=1120 (bold continuous line). When the shear scale is
translated by 9, (right column), all the curves superimpose at low
concentration and exhibit a supplementary stress oy, at the two
largest concentrations.

finite value. The stress, needed to make the suspension flow,
exceeds that which would be necessary according to the ag-
ing behavior. This departure from the scaling behavior oc-
curs once the flow of the suspension has been started but
before the establishment of a steady flow regime at larger
shear values. The excess of stress, relative to the scaling
behavior, needed to make the suspension flow thus differs
from the idealized concept of yield stress, which is a nonzero
value of the stress required to induce the flow, as y— 0, and
we call this excess stress a “supplementary stress.” The
higher the suspension concentration and the higher the shear
rate, the greater the supplementary stress needed. As yield
stress is generally associated with the breakage of bonds be-
tween attractive particles [4], we look for the microscopic
origin of the supplementary stress that we measure macro-
scopically and consider the following:

(i) the evolution of the number of contacts between par-
ticles when shear is applied,

(ii) the orientation of contacts under shear, and

(iii) the angular distribution of interparticle stress between
particles in contact.
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V. MICROSTRUCTURAL ORIGIN OF THE
SUPPLEMENTARY STRESS

A. Evolution of the number of contacts

The microstructure of the suspension may be described
with the help of the pair distribution function, g(r). We have
observed that it exhibits a first peak at contact, near r=2a,
and a series of two correlation peaks. As the stress is local-
ized in the thinnest gaps between particles [29], we focus our
analysis on the particles in near contact and consider the pair
distribution function g(r) of the suspensions at different
times as the suspension equilibrates and as the suspension is
later strained. First note that g(r) exhibits a well-defined
maximum near r=2a, where the particles are at contact.
From the value of this maximum, one can compute the av-
erage number of contacts Z of the particles [30,31],

2a+da
= —f 47r’g(r)dr, (7)
14 2a

with a being the radius of the particles, da being the width of
the first peak of the pair distribution function, N being their
number, and V being the volume of the shearing cell. In the
absence of flow, whatever the volume fraction, the number of
contacts increases with time. Its initial value, at 7,,=0, is very
sensitive to the peculiar configuration of the considered sus-
pension. Then, at long waiting times, it tends toward a pla-
teau value close to 7. The higher the concentration and the
longer the equilibrium waiting time, the faster the plateau
value of Z is reached. When we apply a low shear rate, the
number of contacts generally increases with time. On the
contrary, at high shear rates, the total number of contacts
decreases as time elapses before reaching an equilibrium.
Whatever the applied shear rate value, we found that the
evolution of the number of contacts as a function of the shear
follows a simple exponential behavior (Fig. 6): Z(y)=Z.,
+(Zy—=Z.)e ", where Z, is the number of contacts before
the application of shear, Z.. is the number of contacts once
equilibrium is established, and v, is a characteristic strain of
contact formation (at low shear rate) or contact disruption (at
high shear rates). At low shear rate, vy, is of the order of
100%, corresponding to the characteristic shear necessary to
induce collision between two colloids. 7y, thus decreases
when the volume fraction of the suspension increases [Fig.
6(d)]. In contrast, at higher shear rates, the number of con-
tacts decreases and disruption of contacts dominates the dy-
namics. Here, vy, no longer depends on the volume fraction
of the suspension [Fig. 6(d)]. Whatever the volume fraction
and the shear rate, the evolution of the number of contacts as
a function of shear is always a simple exponential function
and we do not observe a significant increase in the contact
number that could be responsible for the nonscaling behavior
of the flow curves when the suspension has aged long
enough.

B. Orientation of contacts

The evolution of the number of contacts alone cannot
explain the appearance of a supplementary stress. We next
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FIG. 6. Evolution of the number of contacts as a function of 7,
before the application of shear rate (@) and under flow as a function
of the shear 7y for three volume fractions, (a) ¢$=20%, (b) ¢
=40%, and (c) ¢=50%. Two shear rate values are represented: y
=3.5X107% (thin dashed lines) and ¥=3.5X 107" (thick dashed
lines). Continuous lines are exponential fits of the data, Z(y)=Z.
+(Zy=Z.)e 7. (d) Critical shear values deduced from the mo-
noexponential fits at y=3.5X 1073 (@) and y=3.5X 107" (M) as a
function of the volume fraction, ¢.

consider their orientation relative to the shear direction. We
do not observe any orientation of the direction of contacts
either in the plane normal to the shear direction or in the
plane normal to the shear. In the shear/shear gradient plane,
the contacts become anisotropic under flow (Fig. 7). A very
different behavior is observed at low and at high volume
fractions. Indeed, for ¢=20% and 40%, the ratio of the num-
ber of contacts in the compression quadrant over those in the
extension quadrant, N7/ N¢*'| decreases when the shear in-
creases. On the contrary, for the highest volume fraction, ¢
=50%, it increases. This observation agrees with experimen-

1.00 (@

0.954

comp /Next

Z. 0.90

0.854

FIG. 7. Evolution of the ratio of contacts in the compression
quadrant over the contacts in the extension quadrant, as a function
of shear, for ¢p=20% (circles), ¢p=40% (squares), and ¢p=50% (tri-
angles). Solid lines and filled symbols (dashed lines and empty
symbols) correspond to suspensions that have aged for 7,=9.3 (1,
=1120).
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FIG. 8. (a) Angular distribution of the stress between contacts
(stress o, localized along contacts that form an angle [6, +A6)]
with the flow direction (see Fig. 1), with Af=/180, for a suspen-
sion whose volume fraction is ¢=50% and after a shear of 0.05.
Dashed lines (continuous lines) correspond to suspensions that have
aged for #,=9.3 (r,,=1120). (b) Evolution of the ratio of stress
stored along contacts in the compression quadrant over the stress
stored along contacts in the extension quadrant, as a function of
shear, for ¢=20% (circles), ¢p=40% (squares), and $=50% (tri-
angles). Continuous lines and filled symbols (dashed lines and
empty symbols) correspond to suspensions that have aged for 7,
=9.3 (#,,=1120). Arrows point at the nonzero limits of the stress
ratio, at ¢=40% and ¢=50%, and r,,=1120.

tal observation of the formation of aggregates in the com-
pression quadrant, close to the direction of the flow [2].

More remarkably, the contact anisotropy curves for t,,
=9.3 and t,,=1120 superimpose (Fig. 7), whereas the mea-
sured macroscopic stresses exhibit very different behavior,
the longest aged suspension no longer obeying to the scaling
behavior. Once again, this observation rules out the hypoth-
esis that the contact anisotropy is responsible for the excess
of stress.

C. Angular distribution of interparticle stress between
particles in contact

We thus consider the anisotropy of the stress
stored  between contacts and define o9/ 0%y
=f gw/zalz(ﬁ)dﬁ/ I 3/20'12(0)070, the ratio of stress between
contacts in the compression over the extension quadrant. The
stress between contacts for the highest concentrated and

longest aged suspension (¢=50%, t,=1120) accumulates
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FIG. 9. Stress as a function of strain for two different volume
fractions, (a) ¢=20% and (b) ¢p=50%. Continuous lines correspond
to an interaction potential between colloids whose minimum values
Upin are 25kgT (continuous lines) and 125k,T (dashed lines). The
stress curves for Up,=125kgT have been divided by 4.6 (¢
=20%) and 3.2 (¢=50%) in order to match the stress curves for the
less deep minimum of interaction potential (U,,=25kzT).

in the compression quadrant of the flow, whereas stress is
only localized in contacts oriented in the extension quadrant
for the less aged suspension [Fig. 8(a)]. More generally, for
¢$=40% and $=50%, the stress along contacts in the com-
pression quadrant no longer tend toward O when the strain y
goes to 0 [Fig. 8(b)]. Thus, the macroscopic stress necessary
to induce the flow is stored along contacts oriented in the
compression quadrant. This result is important as it comple-
ments the general observation that the yield stress is due to
the breaking of contacts in the extension direction [4]. As
shown in Fig. 8(a), for concentrated flocculated suspensions,
the creation of contacts and their setting under tension in the
compression quadrant of the flow is quantitatively as impor-
tant as their breaking in the extension direction [32].

A macroscopic consequence of the creation and disruption
of contacts between colloids may also be found in the evo-
lution of the stress with strain of the suspension when the
depth of the van der Waals potential minimum is different.
We have performed simulations for ¢=20% and ¢=50% for
two different interaction potential depths, 25kT and 125kT.
Although one may expect that the maximum stress would
increase by the same factor of the depth of the interaction
potential between colloids, we observe that while it increases
by a factor of 4.6 for ¢=20%, there is only a factor of 3.7
increase for ¢p=50% (Fig. 9). This indicates that some stress
is not only due to the van der Waals interaction between the
colloids but also due to the creation and disruption of con-
tacts as the colloids rearrange themselves under shear. Such
forces play a larger role when the suspension is more con-
centrated.

VI. CONCLUSION

In summary, the beginning of the application of shear
strain to a colloidal suspension induces an anisotropy of the
orientation of contacts between particles. This anisotropy is
qualitatively different at low and high volume fractions. In
the first case, an excess of contacts develop, whose relative
orientation lies in the extension quadrant of the shear flow,
and in the latter, there is an increase in particles whose rela-
tive orientation is in the compression quadrant. At low vol-
ume fractions, the stress necessary to induce flow is the
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stress needed to break bonds, and microscopic stress is stored
in the extension quadrant, which corresponds to the standard
explanation of the origin of yield stress. Nevertheless, at high
volume fraction, a new physical mechanism plays a role in
the appearance of yield stress: the accumulation of stress in
the compression quadrant of the flow.
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